Student Name:		
Maths class:		

James Ruse Agricultural High School

2023

YEAR 12 Trial HSC Examination

Mathematics Extension 2

General Instructions

- Reading time 10 minutes
- Working time 3 hours
- Write using black pen
- Pencil may be used for diagrams
- Liquid paper or white out tape is not to be used
- Calculators approved by NESA may be used
- A NESA reference sheet is provided
- In Questions 11–15, show relevant mathematical reasoning and/ or calculations

Total marks: 100

Section I – 10 marks (pages 2–5)

- Attempt Questions 1–10
- Allow about 15 minutes for this section

Section II – 90 marks (pages 6-12)

- Attempt Questions 11-15
- Allow about 2 hours 45 minutes for this section

Section I (10 marks)

Attempt Questions 1 to 10 Allow about 15 minutes for this section

Answer on the separate multiple choice answer sheet.

- **1.** Which of the following is not equivalent to $P \Rightarrow Q$?
 - (A) P is sufficient for Q
 - (B) Q is necessary for P
 - (C) If Q is false, then P is false
 - (D) None of the above
- 2. In which quadrant is the complex number $(-3 + 3i)^3$ located on the Argand plane?
 - (A) The first quadrant
 - (B) The second quadrant
 - (C) The third quadrant
 - (D) The fourth quadrant
- A line has equation $r(t) = \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ 2 \\ 5 \end{pmatrix}$, $\lambda \in \mathbb{R}$. Which of the following is parallel to this line?

(A)
$$r = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 3 \\ 2 \\ -15 \end{pmatrix}$$

(B)
$$r = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 3 \\ -6 \\ -15 \end{pmatrix}$$

(C)
$$\underline{r} = \begin{pmatrix} 0 \\ -1 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$$

(D)
$$r = \begin{pmatrix} -1\\2\\5 \end{pmatrix} + \lambda \begin{pmatrix} 1\\2\\-5 \end{pmatrix}$$

4. Which of the following is an expression for $\int \frac{dx}{\sqrt{7-6x-x^2}}$?

(A)
$$\sin^{-1}\left(\frac{x-3}{2}\right) + C$$

(B)
$$\sin^{-1}\left(\frac{x+3}{2}\right) + C$$

(C)
$$\sin^{-1}\left(\frac{x-3}{4}\right) + C$$

(D)
$$\sin^{-1}\left(\frac{x+3}{4}\right) + C$$

5. In the diagram below, z is any complex number which lies on the line S.

Which equation best describes the locus of z?

(A)
$$\arg z = \frac{\pi}{4}$$

(B)
$$\arg z = \frac{3\pi}{4}$$

(C)
$$|z-2| = |z-2i|$$

(D)
$$|z-2| = |z+2i|$$

- 6. The polynomial P(z) has real coefficients and P(0) = -1. The imaginary number α and the real number β satisfy $P(\alpha) = 0$, $P(\beta) = 0$ and $P'(\beta) = 0$.

 The degree of P(z) is at least:
 - (A) 2
 - (B) 3
 - (C) 4
 - (D) 5
- 7. Which expression is equal to $\int 3\sqrt{x} \ln x \ dx$?
 - (A) $2x\sqrt{x}\left(\ln x \frac{2}{3}\right) + c$
 - (B) $2x\sqrt{x}\left(\ln x + \frac{2}{3}\right) + c$
 - (C) $\frac{1}{\sqrt{x}} \left(\frac{3}{2} \ln x 1 \right) + c$
 - (D) $\frac{1}{\sqrt{x}} \left(\frac{3}{2} \ln x + 1 \right) + c$
- 8. A particle is travelling in simple harmonic motion such that its velocity, in metres per second, is given by the equation $v^2 = a^2 b^2 x^2$, where $a, b \neq 0$. What is the period of motion?
 - (A) $\frac{2b\pi}{a}$
 - (B) $\frac{2a\pi}{b}$
 - (C) $\frac{2\pi}{a}$
 - (D) $\frac{2\pi}{b}$

9. Which of the equations best represent the curve below?

- (A) $\dot{r}(t) = (\cos t)\dot{t} + (\sin t)\dot{t} + (t)\dot{k}$
- (B) $r(t) = (t\cos t)\underline{i} + (t\sin t)\underline{j} + (t)\underline{k}$
- (C) $r(t) = (t \cos t)i + (t \sin t)j + (\frac{1}{t})k$
- (D) $r(t) = (\cos t)i + (\sin t)j + (\frac{1}{t})k$
- 10. A particle is moving along a straight line. At time t, its velocity is v and its displacement from a fixed origin is x.

If $\frac{dv}{dx} = \frac{1}{2v}$ which of the following best describes the particle's acceleration and velocity?

- (A) Constant acceleration and constant velocity
- (B) Constant acceleration and decreasing velocity
- (C) Constant acceleration and increasing velocity
- (D) Increasing acceleration and increasing velocity

End of Section I

Section II (90 marks)

Attempt Questions 11 to 15

Allow about 2 hour 45 minutes for this section

Answer each question in the appropriate writing page. Extra writing pages are available. All necessary working should be shown in every question.

Question 11 (18 marks)

- (b) A polygonal number is an integer which can be represented as a series of dots arranged in the shape of a regular polygon. Triangular numbers, square numbers and pentagonal numbers are examples of polygonal numbers.

For an r-sided regular polygon, where $r \in \mathbb{Z}^+$, $r \ge 3$, the nth polygonal number $P_r(n)$ is given by

$$P_r(n) = \frac{(r-2)n^2 - (r-4)n}{2}$$

where $n \in \mathbb{Z}^+$. Hence, the *n*th triangular number can be expressed as $P_3(n) = \frac{n^2 + n}{2}$.

- (i) The nth pentagonal number can be represented by the arithmetic series $P_5(n) = 1 + 4 + 7 + \dots + (3n 2)$ Hence show that $P_5(n) = \frac{3n^2 n}{2}$ for $n \in \mathbb{Z}^+$.
- (ii) The *n*th polygonal number, $P_r(n)$, can be represented by the series $\sum_{n=0}^{\infty} (1 + (m-1)(r-2))$

where $r \in \mathbb{Z}^+, r \geq 3$.

Use mathematical induction to prove that

$$P_r(n) = \frac{(r-2)n^2 - (r-4)n}{2}$$

where $n \in \mathbb{Z}^+$.

Question 11 continues on the next page

(c) Given $a \in \mathbb{Z}$, prove that if $3a^2 - 4a + 5$ is even, then a is odd.

- 2
- 3

(e) In the diagram below, OABCD is a solid figure where $|\overrightarrow{OA}| = |\overrightarrow{OB}| = 4$ units and $|\overrightarrow{OD}| = 3$ units. The edge \overrightarrow{OD} is vertical, \overrightarrow{DC} is parallel to \overrightarrow{OB} and $|\overrightarrow{DC}| = 1$ unit. The base, OAB, is horizontal and $\angle AOB = 90^\circ$. Unit vectors \underline{i} , \underline{j} and \underline{k} are parallel to \overrightarrow{OA} , \overrightarrow{OB} and \overrightarrow{OD} respectively. The midpoint of \overrightarrow{AB} is M and the point N on \overrightarrow{BC} is such that $\overrightarrow{NC} = 2\overrightarrow{BN}$.

(i) Express vectors \overrightarrow{MD} and \overrightarrow{ON} in terms of i, j and k.

2

(ii) Calculate the angle between \overrightarrow{MD} and \overrightarrow{ON} .

- 2
- (iii) Using vector methods, show that the length of the perpendicular from M to \overrightarrow{ON} is $\sqrt{\frac{22}{5}}$ units.
- 3

Question 12 (18 marks)

(a) Let α be a real number and suppose that z is a complex number such that

$$z + \frac{1}{z} = 2\cos\alpha$$

You may assume that $z^n + \frac{1}{z^n} = 2 \cos n\alpha$ for all positive integer n.

Let $\omega = z + \frac{1}{z}$.

- (i) Show that $\omega^4 + \omega^3 3\omega^2 2\omega = z + \frac{1}{z} + z^2 + \frac{1}{z^2} + z^3 + \frac{1}{z^3} + z^4 + \frac{1}{z^4}$.
- (ii) Find the ninth roots of unity.
- (iii) Hence or otherwise, find all solution of $16(\cos \alpha)^4 + 8(\cos \alpha)^3 12(\cos \alpha)^2 4\cos \alpha + 1 = 0.$
- (b) (i) Show that $\int_0^{\frac{\pi}{2}} \frac{dx}{1 + \cos x + \sin x} = \ln 2.$
 - (ii) By making the substitution u = a x, show that $\int_0^a f(x) dx = \int_0^a f(a x) dx.$
 - (iii) Hence or otherwise, evaluate $\int_0^{\frac{\pi}{2}} \frac{x}{1 + \cos x + \sin x} dx.$
- (c) Let $I_n = \int_{e^{-1}}^1 (1 + \log_e x)^n dx$ and $J_n = \int_{e^{-1}}^1 (\log_e x) (1 + \log_e x)^n dx$ for n = 0, 1, 2, 3 ...
 - (i) Show that $I_n = 1 nI_{n-1}$ for $n = 1, 2, 3 \dots$
 - (ii) Show that $J_n = 1 (n+2)I_n$ for $n = 0, 1, 2, 3 \dots$
 - (iii) Hence find the value of J_3 in simplest exact form.

End of Question 12

Question 13 (18 marks)

- (a) (i) Use De Moivre's Theorem to solve the equation $z^3 = 4\sqrt{2}(1+i)$.
 - (ii) By considering the roots of $z^3 = 4\sqrt{2}(1+i)$, show that $\cos \frac{7\pi}{12} + \cos \frac{\pi}{12} = \cos \frac{\pi}{4}.$
- (b) Sketch the intersection of the following. $|z-3| = 3 \text{ and } -\frac{\pi}{4} \le Arg(z) \le \frac{\pi}{4}$
- (c) (i) Find real numbers a, b and c such that $\frac{10}{(x+1)(x^2+4)} \equiv \frac{a}{x+1} + \frac{bx+c}{x^2+4}$
 - (ii) Hence find $\int \frac{10}{(x+1)(x^2+4)} dx.$
- Consider the line ℓ_1 joining $\begin{pmatrix} -3\\-1\\4 \end{pmatrix}$ and $\begin{pmatrix} -1\\0\\3 \end{pmatrix}$.

Determine the vector equation of ℓ_1 .

- Another line, ℓ_2 , is defined by the vector equation $\underline{r} = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} a \\ 1 \\ -1 \end{pmatrix}$, where λ , $a \in \mathbb{R}$.
 - (ii) Find the possible values of a when the angle between ℓ_1 and ℓ_2 is $\frac{\pi}{4}$.

2

(iii) ℓ_1 and ℓ_2 have a unique point of intersection when $a \neq 2$. Find the point of intersection in terms of a.

End of Question 13

(i)

Question 14 (18 marks)

- (a) Prove by contradiction that there are no rational solutions to the equation $x^3 + 3x + 3 = 0$.
- 4

2

4

- (b) Given a, b, c are positive real numbers.
 - (i) Prove that $a^2 + b^2 + c^2 \ge ab + bc + ca$
 - (ii) Hence or otherwise, prove that $a^3 + b^3 + c^3 \ge 3abc$
 - (iii) Hence or otherwise, prove that $(1+a^3)(1+b^3)(1+c^3) \ge \left(\frac{ab+bc+ca+1}{2}\right)^3$
- (c) The only force acting on a particle moving in a straight line is a resistance $m\lambda(c+v)$ acting in the same line. The mass of the particle is m, its velocity is v, and λ and c are positive constants. The particle starts to move to with velocity u>0 and comes to rest after T seconds. After half the time has elapsed, the particle's velocity is a quarter of its initial velocity.

Show that

$$c = \frac{u}{8}$$

(d) A particle is moving in simple harmonic motion with centre around the origin, starting at x = m, where m > 0. The displacement equation is given by $x = a \cos(nt + \alpha)$. After 1 second, the particle is at x = r, where r > m and after another second, it returns to x = r.

Show that

$$\cos n = \frac{r+m}{2r}$$

End of Question 14

Question 15 (18 marks)

- (a) A particle of unit mass is moving in horizontal motion, subject to a resistance force of $v^2 + v^3$, where v is the object's velocity. The particle has initial velocity v_0 , where $v_0 > 0$.
 - (i) Find the distance s travelled by the particle when its velocity is $\frac{v_0}{2}$.
 - (ii) Show that the time T taken to travel the distance s is $T = \frac{1}{v_0} s$.
 - (iii) Show that if the particle starts at the origin, then

$$v = \frac{v_0}{v_0 x + v_0 t + 1}$$

2

satisfies the equation of motion.

- (b) A particle of unit mass is thrown vertically downwards with an initial velocity of v_0 . It experiences a resistive force of magnitude kv^2 where v is its velocity. Taking downwards as the positive direction, the equation of motion of the particle is given by $\ddot{x} = g kv^2$. Let V be the terminal velocity of the particle.
 - (i) Explain why $V = \sqrt{\frac{g}{k}}$.
 - (ii) Show that $v^2 = V^2 + (v_0^2 V^2)e^{-2kx}$.
- (c) z_1 and z_2 are two complex numbers representing the two points A and B in the Argand diagram. z_3 is a complex number representing the point C such that |AB|: |AC| = 1: 4. z_4 is a complex number representing the point D, such that |OB|: |OD| = 1: k, for some constant k and O is the origin. The points A, B and C are collinear.
 - (i) Find z_3 in terms of z_1 and z_2 .
 - (ii) Given that $z_2 z_1$ and $z_4 z_3$ are perpendicular, prove that $k = \frac{4|z_2|^2 7|z_1||z_2|\cos\theta + 3|z_1|^2}{|z_2|^2 |z_1||z_2|\cos\theta},$

where θ is the angle between z_1 and z_2 .

End of paper

1.(D)
2.
$$(-3+3i)^3$$
: $(-3)^3 + 3 (-3)^2(3i) + 3 (-3)(3i)^2 + (3i)^2$

= $-27 + 81i - 81i^2 + 27i^3$

= $-27 + 81i + 81 - 27i$

= $54 + 54i$

(A)
3. $\begin{pmatrix} -3 \\ -6 \end{pmatrix} = -3 \begin{pmatrix} -1 \\ 2 \end{pmatrix}$

(B)

4.
$$\int \frac{dx}{\sqrt{7^2 - 6x - x^2}} = \int \frac{dx}{\sqrt{16 - (x + 3)^2}}$$

= $\sin^{-1} \frac{x + 3}{4} + C$

(D)
5. (D)
6. $P(2) = a(2 + x)(2 - x)(2 + \beta)(2 + \beta)$

(c)
7.
$$\int 3\sqrt{x} \ln x \, dx$$
 $U = \ln x$
 $V = \frac{1}{3}x^{\frac{3}{2}}$
 $U' = \frac{1}{x}$
 $V' = \sqrt{17}$

3. $\left(\frac{3}{3}x^{\frac{3}{2}} \ln x - \int \frac{3}{3}x^{\frac{3}{2}} + C$
 $= 2x^{\frac{3}{2}} \ln x - 2 \int \sqrt{1x} \, dx$
 $= 2x^{\frac{3}{2}} \ln x - 2 \int \sqrt{1x} \, dx$
 $= 2x^{\frac{3}{2}} \ln x - 2 \int \sqrt{1x} \, dx$
 $= 2x^{\frac{3}{2}} \ln x - 2 \int \sqrt{1x} \, dx$
 $= 2x^{\frac{3}{2}} \ln x - 2 \int \sqrt{1x} \, dx$
 $= 2x^{\frac{3}{2}} \ln x - 2 \int \sqrt{1x} \, dx$
 $= 2x^{\frac{3}{2}} \ln x - 2 \int \sqrt{1x} \, dx$
 $= 2x^{\frac{3}{2}} \ln x - 2 \int \sqrt{1x} \, dx$
 $= 2x^{\frac{3}{2}} \ln x - 2 \int \sqrt{1x} \, dx$
 $= 2x^{\frac{3}{2}} \ln x - 2 \int \sqrt{1x} \, dx$
 $= 2x^{\frac{3}{2}} \ln x - 2 \int \sqrt{1x} \, dx$
 $= 2x^{\frac{3}{2}} \ln x - 2 \int \sqrt{1x} \, dx$
 $= 2x^{\frac{3}{2}} \ln x - 2 \int \sqrt{1x} \, dx$
 $= 2x^{\frac{3}{2}} \ln x - 2 \int \sqrt{1x} \, dx$
 $= 2x^{\frac{3}{2}} \ln x - 2 \int \sqrt{1x} \, dx$
 $= 2x^{\frac{3}{2}} \ln x - 2 \int \sqrt{1x} \, dx$
 $= 2x^{\frac{3}{2}} \ln x - 2 \int \sqrt{1x} \, dx$
 $= 2x^{\frac{3}{2}} \ln x - 2 \int \sqrt{1x} \, dx$
 $= 2x^{\frac{3}{2}} \ln x - 2 \int \sqrt{1x} \, dx$
 $= 2x^{\frac{3}{2}} \ln x - 2 \int \sqrt{1x} \, dx$
 $= 2x^{\frac{3}{2}} \ln x - 2 \int \sqrt{1x} \, dx$
 $= 2x^{\frac{3}{2}} \ln x - 2 \int \sqrt{1x} \, dx$
 $= 2x^{\frac{3}{2}} \ln x - 2 \int \sqrt{1x} \, dx$
 $= 2x^{\frac{3}{2}} \ln x - 2 \int \sqrt{1x} \, dx$
 $= 2x^{\frac{3}{2}} \ln x - 2 \int \sqrt{1x} \, dx$
 $= 2x^{\frac{3}{2}} \ln x - 2 \int \sqrt{1x} \, dx$
 $= 2x^{\frac{3}{2}} \ln x - 2 \int \sqrt{1x} \, dx$
 $= 2x^{\frac{3}{2}} \ln x - 2 \int \sqrt{1x} \, dx$
 $= 2x^{\frac{3}{2}} \ln x - 2 \int \sqrt{1x} \, dx$
 $= 2x^{\frac{3}{2}} \ln x - 2 \int \sqrt{1x} \, dx$
 $= 2x^{\frac{3}{2}} \ln x - 2 \int \sqrt{1x} \, dx$
 $= 2x^{\frac{3}{2}} \ln x - 2 \int \sqrt{1x} \, dx$
 $= 2x^{\frac{3}{2}} \ln x - 2 \int \sqrt{1x} \, dx$
 $= 2x^{\frac{3}{2}} \ln x - 2 \int \sqrt{1x} \, dx$
 $= 2x^{\frac{3}{2}} \ln x - 2 \int \sqrt{1x} \, dx$
 $= 2x^{\frac{3}{2}} \ln x - 2 \int \sqrt{1x} \, dx$
 $= 2x^{\frac{3}{2}} \ln x - 2 \int \sqrt{1x} \, dx$
 $= 2x^{\frac{3}{2}} \ln x - 2 \int \sqrt{1x} \, dx$
 $= 2x^{\frac{3}{2}} \ln x - 2 \int \sqrt{1x} \, dx$
 $= 2x^{\frac{3}{2}} \ln x - 2 \int \sqrt{1x} \, dx$
 $= 2$

MATHEMATICS EXT 2: Question 1				
Suggested Solutions	Marks	Marker's Comments		
Suggested Solutions a, $\sqrt{3}$ ti = $2e^{i\%}$ $\sqrt{3}$ - $i = 2e^{-i\%}$.0			
V3 (- 4E)				
$(\sqrt{3}+i)^{12}+(\sqrt{3}-i)^{12}=(2e^{i\frac{\pi}{6}})^{12}+(2e^{-i\frac{\pi}{6}})^{12}$				
	•••••			
= 2 e 2 + 2e -12 =				
$= 2^{12} + 2^{12}$	•••••			
$= 2^{13}$	1			
h: P /) - 1+4+7+ + /2 -21				
bi, P5(1) = 1+4+7++ (31-2)				
		Must use son		
This is an A.P. with a=1, l=3n-2 and		of on A.P.		
n dems		Bronia		
		• • • • • • • • • • • • • • • • • • • •		
$\frac{1}{2}(n) = \frac{n}{2}(1-3n-2)$				
$= \frac{1}{2}(3n-1)$				
······································				
$= 3n^2 - n \text{, as regular}$				
•				
:	•••••	T. I. Vice		
ii, Bose coose: n=1		Inducting on		
$2H3 = P_{r}(1) = 5(1+(n-1)(r-2))$, by def.		either not or		
= 1+ O(r-2)		17/3 was antepted		
,				
<u> </u>	•••••	For completeness, this should have		
$AHS = \frac{(r-2)x^2 - (r-4)x^4}{2}$		been a "ola ble		
2		induction" on		
$=\frac{2}{2}$	Base	both variables		
<i>L</i>	Ge C			
=1=2H3	0			
· box cox is true				

MATHEMATICS EXT 2: Question O		
Suggested Solutions	Marks	Marker's Comments
Assume for some b>1 bez that		
$P_{r}(b) = \frac{(r-2)b^{2} - (r-4)b}{2}$		
M		
Now we wish to prove that $P_r(kr_1) = \frac{(r-2)(kr_1)^2 - (r-4)(kr_1)}{2}$	•••••	
2	•••••	
	•••••	
LHS = Pr (b+1)		
$= \overset{\text{def}}{\leq} \left(1 + (n-1)(r-2)\right)$		
m=1		
$= \frac{3}{3} \left(\frac{1+(n-1)(r-2)}{1+n(r-2)} \right)$	•••••	
m=1	•••••	
= Pr(b) + 1+ b(r-2)	•••••	
$= (r-2)b^2 - (r-4)b + 1+b(r-2)$		
2	usi'ng	
by (F)	bi	767
$= (r-2)b^2 - (r-4)b + 2 + 2b(r-2)$		
$= (r-2) k^{2} + 2k(r-2) + (r-2) - (r-2) + 2 - (r-4)k$		
/2 2) / h ² + 0 h - 1 / 2 - 1 / 2 / (c-l/) h		
$= (r-2)(a^2+2ar1)-r+4-(r-4)a$	•••••	
$= (r-2)(h+1)^{2} - (r-4)(h+1)$		
- <u>(1-2)CKTK) </u>	•••••	
= RHS		
: attement is Inco Roman con il it in		
istatement is true for n=bil if it is true for n=b.		
	cettino	to the
induction or integers now 1.	end a	ont algebra

MATHEMATICS EXT 2: Question 10			
Suggested Solutions	Marks	Marker's Comments	
c, Consider le quivalent contapositie:		Stedents used:	
If a is even, then $3a^2-4a75$ is add.		· Direct proof	
		· Contradiction	
Let $a = 2b$, $b \in \mathbb{Z}$	progress (j)	All are valid if	
30°-40+5 = 3(2b)°-4(2k)+5		completed areotte	
$= 2(6h^2 - 4h + 2) + 1$, , , ,	
$= 2M + 1, \text{ where } M = 6b^2 - 4br2$ 15 on integer			
-: 302-40.75 à odd	(D)		
te equivalent contrapositive is the	Comple	<u>e</u>	
d, C(1,0,1)		Again, multiple	
		this question. Only	
		one is shown	
P(3+22, 1+2, 2+22)			
Let $C = (1, 0, 1)$ be the centre of the			
sphere and P the point of languency between			
the sphere and line			
Then since P lies on the line, it has coordinates (3+22, 1+2, 2+22) for some 2.			
Now, we want $CP \cdot \chi = 0$, where χ is the direction of ℓ			
me outeches of t			
	•••••		

MATHEMATICS EXT 2: Question O			
Suggested Solutions	Marks	Marker's Comments	
$ \frac{1}{1+2A} \cdot \begin{pmatrix} \frac{2+2A}{1+2A} \\ \frac{1}{2} \end{pmatrix} = 0 $	العص	nising	
4+47+1+2+47=0 92+7=0			
$\lambda = -\frac{7}{4}$	vajie		
: Equation of sphere is	bod	CS	
$\left \begin{array}{c} z - \left(\begin{array}{c} 1 \\ 1 \end{array} \right) \right = \left[\overline{C} \right]$			
$= \begin{pmatrix} 4/q \\ 2/q \\ -5/q \end{pmatrix}$			
$\left \begin{array}{c} \left \begin{array}{c} c - \left(\begin{array}{c} i \\ i \end{array} \right) \right = \sqrt{5} \end{array}\right $	-(1)		
05	final		
$(x-1)^2 + y^2 + (z-1)^2 = \frac{5}{9}$			
	•••••		

II e) i) Given
$$\vec{OA} = 4i$$
, $\vec{OB} = 4i$, $\vec{OE} = 3k$, $\vec{DE} = i$

$$\vec{MB} = \vec{MB} + \vec{BO} + \vec{OD}$$

$$= 1 \vec{AB} + \vec{BO} + \vec{OD}$$

$$= 1 (4i - 4i) - 4i + 3k$$

$$= -2i - 2j + 3k$$
Better written
I

whis order

$$\vec{ON} = \vec{OB} + \vec{BN}$$

$$= 06 + 1 \vec{BC}$$

$$= 4i + 1 ((3k + i) - 4i)$$

$$= 4j + k - j$$

$$= 3j + k$$
Ii) Let the acquired angle be \vec{O} .

Then

$$\vec{MB} \cdot \vec{ON} = |\vec{MP}| |\vec{ON}| |\vec{CDO}|$$

$$\vec{NTO} = |\vec{MP}| |\vec{ON}| |\vec{COO}|$$

$$\vec{NTO} = |\vec{MP}| |\vec{ON}| |\vec{COO}|$$

$$\vec{NTO} = |\vec{MP}| |\vec{ON}|$$

$$\vec{NTO} = |\vec{MP}| |\vec{ON}|$$

$$\vec{NTO} = |\vec{MP}| |\vec{ON}|$$

$$\vec{NTO} = |\vec{MP}| |\vec{ON}|$$

$$\vec{NTO} = |\vec{NTO}|$$

$$\vec{NTO} = |$$

iii) P (0,3,1,	
(0,0,0)	
Let point of	
intersection of the M(2,2,0)	
perpendicular be?	
Method 1 Find OP the projection S OM on	
Method 1 Find OP, the projection of OM on to ON. Then use Pythagos or DOPM	
•	
$OP = Proj_{\vec{o}\vec{n}} \vec{OM} = \frac{\vec{OM} \cdot \vec{ON}}{ \vec{ON} ^2} \vec{ON}$	
- 01(+0 ON	projection formla
$= 0+6+0 \ \overrightarrow{ON}$ $= 3^{2}+1^{2}$	projection somia
= 6 ON	
10P = 3 10N	
= 3510	1 for a correct
5.	Somulation for
Now IPM = OM2-OP2 (Pythagoras)	answer
= 8 - 90/25	
$= \frac{110/25}{2}$	
$= \frac{22/5}{ PM } = \frac{22}{5}$ units.	I for corred
	answer, suitably
(N.B. The diagram was useful to see what was required.	presented (ie
what was required.	enough working)
	`
·	

111) Method 2 Find the co. ordinates 6) Pthen	
ii) Method 2 Find the co. ordinates of Pethen Calculate the length of the resulting	
vector MP.	·
$\overrightarrow{OP} = \lambda \overrightarrow{ON}$ for some $\lambda \in \mathbb{R}$, $= 3\lambda j + \lambda k$	
$= 3\lambda j + \lambda k$	
Now OP. PH = O (Perpendicular)	
ie (3) + 1 k (2 = -3) j - 1 k) = 0	
$-3\lambda(2-3\lambda) - \lambda^{2} = 0$ $6\lambda - 9\lambda^{2} - \lambda^{2} = 0$ $10\lambda^{2} = 6\lambda$	
$6\lambda - 9\lambda^2 - \lambda^2 = 0$	
$10\lambda^2 = 6\lambda$	I for hely or
$\frac{\lambda = \frac{3}{5} \left(\lambda \neq 0\right)}{2}$	equivalent
108 01 21	
-'OP = 9j+3k	
-, PM = 2i+1j-3k	
- PM = 2L+ = J-3R	
IPM = /4+1 +9	1 for a som of
V 25 25	IPM
= 100 + 1 + 9 B	
1 25	
$\frac{100}{25}$	
= \(\frac{22}{2} \) units \(\text{D} \)	1 for correctly
V 5	deduced answer
	(It is NOT
	satisfactory to
	gump from A
	to V.

MATHEMATICS Extension 2: Question			
Suggested Solutions	Marks	Marker's Comments	
a) i) RTP: $\omega^4 + \omega^3 - 3\omega^2 - 2\omega =$ $Z + \frac{1}{2} + Z^2 + \frac{1}{2} + Z^3 + \frac{1}{2} + Z^4 + \frac{1}{2} + Z^4 + \frac{1}{2} + Z^4 + \frac{1}{2} + Z^4 +$		expanding Workeing	
$r^{9}(\cos 9\theta + i\sin 9\theta) = \cos 0 + i\sin 0$ $\therefore r = 1 \qquad (De Moivve's)$ $99 = 0 + 2k\pi, k \in \mathbb{Z}$ $\theta = \frac{2k\pi}{9}$	\bigcirc	must mention that k is an integer.	
1. $\cos \frac{2\pi}{q} = i \sin \frac{2\pi}{q}$, $\cos \left(-\frac{2\pi}{q}\right) + i \sin \left(-\frac{2\pi}{q}\right)$ $\cos \frac{4\pi}{q} + i \sin \frac{4\pi}{q}$, $\cos \left(-\frac{4\pi}{q}\right) + i \sin \left(-\frac{4\pi}{q}\right)$ $\cos \frac{6\pi}{q} + i \sin \frac{6\pi}{q}$, $\cos \left(-\frac{6\pi}{q}\right) + i \sin \left(-\frac{6\pi}{q}\right)$ $\cos \frac{8\pi}{q} + i \sin \frac{8\pi}{q}$, $\cos \left(-\frac{2\pi}{q}\right) + i \sin \left(-\frac{2\pi}{q}\right)$			

MATHEMATICS Extension 2: Question	••••	
Suggested Solutions	Marks	Marker's Comments
iii) 16(cosx)4 + 8(cosx)3 - 12(cosx)2		
$(2\cos x)^{4} + (2\cos x)^{3} - 3(2\cos x)^{2}$		
$-2(2\omega s \alpha) + 1 = 0$		
(マナシ)+ (マナシ) - 3(マナシ) - 2(マナシ)+1 =0		
$\omega^{4} + \omega^{3} - 3\omega^{2} - 2\omega + 1 = 0$		
군 + 군 + + 군 3 + 군 3 + 군 2 + 군 2 + 군 + 군 + 1 = 0		
28+27+26+25+24+23+22+2+1 =0		
for z ⁹ = 1		
(Z-1)(Z8+Z7+Z6+Z5+Z4+Z3+22+Z+)=0		
the solutions for $z^8+z^7+z^6+z^7+z^4+z^3+z^2+z^4$ are the complex solutions for $z^9=1$	+1=0	
$\therefore \text{ solution s are: } \pm \frac{2\pi}{9}, \pm \frac{4\pi}{9}, \pm \frac{6\pi}{9}, \pm \frac{8\pi}{9}$	1	
b) i) let $t = \tan \frac{x}{a}$ $\frac{dt}{dx} = \frac{1}{a} \sec^2 \frac{x}{a}$ $\frac{dx}{dt} = \frac{2}{\sec^2 \frac{x}{a}}$		
$= 2\cos^2\frac{x}{2}$ $= \frac{2}{1+t^2}$		
$\therefore dx = \frac{2dt}{1+t^2}$		
when $x = \frac{\pi}{2}$, $t = 1$		
x=0, t=0		

MATHEMATICS Extension 2: Question		
Suggested Solutions	Marks	Marker's Comments
$\int_{0}^{\frac{\pi}{2}} \frac{dx}{1 + \cos x + \sin x} = \int_{0}^{1} \frac{2dt}{1 + t^{2}} + \frac{2t}{1 + t^{2}}$ $= \int_{0}^{1} \frac{2dt}{1 + t^{2} + 1 - t^{2} + 2t}$ $= \int_{0}^{1} \frac{2dt}{2 + 2t}$ $= \int_{0}^{1} \frac{2dt}{2 + 2t}$	(
$= \int_{0}^{1} \frac{2dt}{a + at}$ $= \int_{0}^{1} \frac{dt}{1 + t}$ $= \left[\ln \left 1 + t \right \right]_{0}^{1}$ $= \ln \left 1 + 1 \right - \ln \left 1 + 0 \right $	(1)	
= ln2-0 = ln2	1	Show substitution.
let $u = a - x$, $x = a - u$ $\frac{du}{dx} = -1$ $dx = -du$ when $x = a$, $u = 0$ $x = 0$, $u = a$ $\int_0^a f(x) dx = \int_0^a f(a - u) (-du)$ $= \int_0^a f(a - u) du$ $as u is a dummy variable$ $= \int_0^a f(a - x) dx$ $= \int_0^{\frac{\pi}{2}} \frac{x}{1 + \cos(\frac{\pi}{2} - x) + \sin(\frac{\pi}{2} - x)} dx$ from (ii)		

MATHEMATICS Extension 2: Question		
Suggested Solutions	Marks	Marker's Comments
$= \int_{0}^{\frac{\pi}{2}} \frac{\frac{\pi}{2} - x}{1 + \sin x + \cos x} dx$ $= \int_{0}^{\frac{\pi}{2}} \left(\frac{\frac{\pi}{2}}{1 + \cos x + \sin x} - \frac{x}{1 + \cos x + \sin x} \right) dx$	1	
$\frac{1}{2} \int_{0}^{\frac{\pi}{2}} \frac{\chi}{1 + \cos \chi + \sin \chi} d\chi$		
$= \frac{\pi}{2} \int_{0}^{\frac{\pi}{2}} \frac{1}{1 + \cos x + \sin x} dx$		
$= \frac{\pi}{2} (\ln 2) \text{from (i)}$		
$\int_0^{\frac{\pi}{2}} \frac{\chi}{1 + \cos x + \sin x} dx = \frac{\pi}{4} \ln 2$		
c) i) $I_n = \int_{e^{-1}}^{1} (1 + \log_e x)^n dx$ $u = (1 + \ln x)^n \forall = 1$ $u' = \frac{n}{x} (1 + \ln x)^{n-1} \forall = x$		
$I_{n} = \left[\chi \left(1 + \ln \chi \right)^{n} \right]_{e^{-1}}^{c} - \int_{e^{-1}}^{1} \chi \left(\frac{n}{\chi} \right) \left(1 + \ln \chi \right)^{n-1} d\chi$	0	
$= (1+\ln(1))^{n} - e^{-1}(1+\ln e^{-1})^{n}$ $- n \int_{e_{1}}^{1}(1+\ln x)^{n-1} dx$ $= 1 - e^{-1}(1-1)^{n} - n I_{n-1}$		
$= 1 - e^{-1}(1-1)^{n} - n I_{n-1}$ $= 1 - n I_{n-1}$		

MATHEMATICS Extension 2: Question			
Suggested Solutions	Marks	Marker's Comments	
ii) $J_{n} = \int_{e^{-1}}^{e^{-1}} (\ln x) (1 + \ln x)^{n} dx$ $= \int_{e^{-1}}^{e^{-1}} (1 + \ln x - 1) (1 + \ln x)^{n} dx$ $= \int_{e^{-1}}^{e^{-1}} [(1 + \ln x)^{n+1} - (1 + \ln x)^{n}] dx$ $= \int_{e^{-1}}^{e^{-1}} (1 + \ln x)^{n+1} dx - \int_{e^{-1}}^{e^{-1}} (1 + \ln x)^{n} dx$	\bigcirc		
$ \int_{e^{-1}} (1+1nx) = \int_{e^{-1}} (1+1nx) = I_{n} = I$	Θ		
$iii) J_{3} = 1 - (3+2)I_{3}$ $= 1 - 5(1-3I_{2})$ $= 1 - 5 + 15(1-2I_{1})$ $= -4+15-30(1-1I_{0})$ $= 11 - 30 + 30[e^{-1}]dx$ $= -19 + 30[x]e^{-1}$ $= -19 + 30(1-e^{-1})$ $= 11 - 30e^{-1}$		showing To = 1-e-1	

Questian 13

 a_{1} a_{2} a_{3} = $4\sqrt{2}(1+i)$

= 8 (cos # + isin#)

let Z = r (cos 0 + 25700)

then $z^3 = r^3 (\cos 30 + i \sin 30)$

1 mark for using De Moivre's Theorem correctly

 $r^{3}(\cos 3\theta + i\sin 3\theta) = 8(\cos \frac{\pi}{4} + i\sin \frac{\pi}{4})$

13 = 8

 $30 = \frac{\pi}{4} + 2k\pi$

KEZ

r = 2

 $\theta = \frac{\pi + 8k\pi}{12}$

:. when k=0 $Z=2\left(\cos\frac{\pi}{12}+\cos\frac{\pi}{12}\right)$

k = 1, $z = 2 \left(\cos \frac{9\pi}{72} + i \sin \frac{9\pi}{72} \right)$

= 2 (cos 3 t + i sin 3 t)

K = 2, $Z = 2 \left(\cos \frac{17\pi}{12} + 7 \sin \frac{17\pi}{12} \right)$

= 2 (105(-72)+ 25m (-72))

1 mark for all 3 solutions correct

11, Za = 2 (ws = + ism =) + 2 (ws = + ism =) + 2 (vs (- =) + ism (- =) = 0

Equating real parts: $2\cos\frac{\pi}{2} + 2\cos\frac{3\pi}{4} + 2\cos\left(-\frac{7\pi}{2}\right) = 0$ or collect parts $\cos\frac{\pi}{2} - \cos\frac{\pi}{4} + \cos\frac{7\pi}{2} = 0$

* cis: not allowed unless defined

-1 (05 TZ + (05 TZ = (05 TZ

* e.c. allowed only if the error did not omit skills that needed to be assessed

1 mark for sum of roots

6,

1 mark for equating real parts and working through logically to get to the required result

1 mark for circle + centre, radius

1 mark for lines + angles

1 mark for correct solution

$$(x+1)(x^2+4)$$
 = $(x+1)(x^2+4)$ = $(x+1)(x^2+4)$

$$10 = \alpha \left(x^2 + 4 \right) + \left(bx + c \right) \left(x + 1 \right)$$

1 mark for setting this statement

1 mark for 1 correct answer

$$\chi = 0$$

$$10 = 4a + C$$

1 mark for all correct answers

$$\Rightarrow$$

$$10 = 5a + 2(b+c)$$

$$b = -2$$

$$a = 2$$
,

$$b = -2$$
, $C = 2$

$$C = 2$$

$$\int \frac{10}{(x+1)(x^2+4)} dx$$

$$= \int \frac{2}{\pi + 1} + \frac{-2\pi + 2}{\pi^2 + 4} dx$$

1 mark for getting the first integral correct or equivalent

$$= \int \frac{z}{2+1} - \frac{2x}{2^2+4} + \frac{2}{2^2+4} dx$$

1 mark for correct solution

2 ly (x+1) - ly (x2+4) tan

missing absolute value: allowed

missing C: allowed

$$\frac{d}{dy} = \begin{pmatrix} -1 \\ 0 \\ 3 \end{pmatrix} = \begin{pmatrix} -3 \\ -1 \\ 4 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}$$

$$\frac{1}{2} l_1 : \Gamma = \begin{pmatrix} -1 \\ 0 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} \qquad \lambda \in \mathbb{R}^2$$

1 mark for correctly finding the direction vector

1 mark for correct solution, defining lambda

$$\frac{r}{4} = \begin{pmatrix} -3 \\ 1 \\ 4 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}$$

$$\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}$$

$$\begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} \circ \begin{pmatrix} a \\ 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} \begin{pmatrix} a \\ 1 \\ -1 \end{pmatrix} \begin{pmatrix} \cos \theta \\ \cos \theta \end{pmatrix}$$

1 mark for setting this statement

1 mark for the correct solution

$$20+1+1 = \sqrt{6} \cdot \sqrt{\alpha^2 + 2} \cdot \frac{1}{\sqrt{\Sigma}}$$

$$2\alpha + 1 + 1 = \sqrt{6} \cdot \sqrt{\alpha^2 + 2} \cdot \left(-\frac{1}{62}\right)$$

$$2\alpha + 2 = \sqrt{3(\alpha^2 + 1)}$$

$$2\alpha + 2 = -\int 3(a^2 + 2)$$

$$(2\alpha + 2)^2 = 3(\alpha^2 + 2)$$

$$(2\alpha+2)^2 = 3(\alpha^2+2)$$

$$\alpha^2 + 8\alpha - 2 = 0$$

$$a^2 + 8a - 2 = 0$$

$$a = -4 + 3\sqrt{2}$$

$$\therefore \alpha = -4 - 3\sqrt{1}$$

(reject positive)

$$a = -4 \pm 3\sqrt{2}$$

$$\frac{777}{\binom{0}{3}} + \lambda \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} + \mu \begin{pmatrix} a \\ 1 \\ -1 \end{pmatrix}$$

$$\int_{0}^{\infty} -1 + 2\lambda = a\mu$$

0

2

1 mark for setting equations 1 and 2 OR equations 1 and 3

$$2-\lambda = 2-\mu$$

(3)

1 mark for the correct solution

$$-\mu = \frac{1}{a-z}$$

 $(a \neq z)$

: The point of intersection =
$$\left(\frac{a}{a-2}, 1 + \frac{1}{a-2}, \frac{1}{a-2}\right)$$

$$= \left(\begin{array}{cccc} a & \alpha - 1 & 2\alpha - 5 \\ \hline \alpha - 2 & \alpha - 2 & \alpha - 2 \end{array}\right) \sqrt{2\alpha - 2}$$

Ques	him 14									
• •		by Cont						10 000	tional	
Solution		sume								
		$\frac{P}{q}$ is a $3\left(\frac{P}{q}\right)$			9 9 10	rich	CF, 9,		Un	(ark)
Method	<u>'</u>	3 P 9 ² +	393=1						lmark	
	Case	P^{3} is $3q^{3}$ i.	odd	are o	dd					
	c		isodd	.	n					
		$+3P9^{2}+$				and E	g are	odl		
		:. P ³ is								rk for
		pdd $+ eve$ $+3pq^2+3$	n + eve	en ‡ ei		and	Q is e	liku		dering Cases
	Case 3:	pio e	ven a	J		_				
		3 p g i i	odd						show each	rk for ving that h cuse
	· P3	ven + e + 3 p q +	397+1	o if p	is eve				/ Con	ds to
		p and p3+3p4	_							

Method2. P=-3(Pq+q3) =-3q2(p+q) p3 is divisible by 3 mark for considering .. p is divisible by 3 1. 3 KEZ, P=3K $(3K)^3 = -39^2(f+2)$ $-9K^{3}=9^{2}(P+2)$ q² is divisible q . q is divisible by 3 but HCF (P,9)=1 I mark for proving that it leads to Contradiction OR P+9 is divisible by9 3 n = 2, P+2=9n q = 9n - 9 = 9n - 3k= 3(3n-K) and q is divisible by 3 Contradiction (b)(1) (a-b) >0 .1 a+b> > 2ab Similarly attach > 2 ac 62+c2 > 26 C 2(a+5+c) >2(ab+bc+ca) : a + b + c > ab + bc + ca (a+b+c)(a+b+c) > (a+b+c) (ab+bc+ca) (11) Expand both side and simplify, we obtain $a^2+b+c^3 \geq 3abc$ (iii) $\frac{a^3}{1+a^3} + \frac{b^3}{1+b^3} + \frac{1}{1+c^3} \ge \frac{3ab}{3}$ (1+b³) (1+c³) $\frac{a^{3}}{1+a^{3}} + \frac{1}{1+b^{3}} + \frac{c^{3}}{1+c^{3}} \ge \frac{3ac}{\sqrt{(1+a^{3})(1+b^{3})(1+c^{3})}}$ $\frac{1}{1+a^{3}} + \frac{b^{3}}{1+b^{3}} + \frac{c^{3}}{1+c^{3}} \ge \frac{3ac}{\sqrt{(1+a^{3})(1+b^{3})(1+c^{3})}}$ $\frac{1}{1+a^{3}} + \frac{b^{3}}{1+b^{3}} + \frac{c^{3}}{1+c^{3}} \ge \frac{3ac}{\sqrt{(1+a^{3})(1+b^{3})(1+c^{3})}}$

Year 12 Extension 2 Trial HSC Question 15

a)

i.
$$ma = -(v^2 + v^3)$$
 (Newton's 2nd law)
 $m = 1 \Rightarrow a = -(v^2 + v^3)$
 $v \frac{dv}{dx} = -(v^2 + v^3)$
 $\frac{dv}{dx} = -(v + v^2)$
 $= -v(1 + v)$
 $\int_{v_0}^v \frac{dv}{v(1 + v)} = -\int_0^x dx$
 $\int_{v_0}^v \left(\frac{1}{v} - \frac{1}{v + 1}\right) dv = -x$
 $-x = [\ln|v| - \ln|v + 1|]_{v_0}^v$
 $= \left[\ln\left(\frac{v}{v + 1}\right)\right]_{v_0}^v$ (Since $v > 0$)
 $= \ln\left(\frac{v}{v + 1}\right) - \ln\left(\frac{v_0}{v_0 + 1}\right)$
 $= \ln\left(\frac{v(v_0 + 1)}{v_0(v + 1)}\right)$
 $x = \ln\left(\frac{v_0(v + 1)}{v(v_0 + 1)}\right)$
 $v = \frac{v_0}{2}, x = s$
 $s = \ln\left(\frac{v_0\left(\frac{v_0}{2} + 1\right)}{\frac{v_0}{2}(v_0 + 1)}\right)$
 $= \ln\left(\frac{v_0 + 2}{v_0 + 1}\right)$ or $\ln\left(1 + \frac{1}{v_0 + 1}\right)$

Let
$$\frac{1}{v(v+1)} \equiv \frac{a}{v} + \frac{b}{v+1}$$
$$a(v+1) + bv \equiv 1$$
$$v = -1 \Rightarrow b = -1$$
$$v = 0 \Rightarrow a = 1$$
$$\therefore \frac{1}{v(v+1)} \equiv \frac{1}{v} - \frac{1}{v+1}$$

1st mark for getting to $v \frac{dv}{dx} = -(v^2 + v^3)$

 2^{nd} mark for correctly integrating the function with respect to v

3rd mark for getting the correct answer

$$\begin{aligned} x &= \ln \left(\frac{v_0(1+v)}{v(1+v_0)} \right) \\ \frac{v_0(1+v)}{v(1+v_0)} &= e^x \\ \frac{1+v}{v} &= e^x \left(\frac{1+v_0}{v_0} \right) \\ 1 &+ \frac{1}{v} &= e^x \left(\frac{1+v_0}{v_0} \right) \\ \frac{1}{v} &= e^x \left(\frac{1+v_0}{v_0} \right) - 1 \qquad \left(v = \frac{v_0}{e^x(1+v_0) - v_0} = \frac{v_0 e^{-x}}{(1+v_0) - v_0 e^{-x}} = \frac{v_0 e^{-x}}{1+v_0(1-e^{-x})} \right) \\ \frac{dt}{dx} &= e^x \left(\frac{1+v_0}{v_0} \right) - 1 \qquad \text{1st mark for correctly making } \frac{1}{v} \text{ or } v \text{ the subject} \\ \int_0^T dt &= \int_0^s e^x \left(\frac{1+v_0}{v_0} \right) - 1 \, dx \\ T &= \left[e^x \left(\frac{1+v_0}{v_0} \right) - x \right]_0^s \qquad \text{2nd mark for correctly integrating with respect to } x \\ &= \left[e^s \left(\frac{1+v_0}{v_0} \right) - s \right] - \left(\frac{1+v_0}{v_0} \right) \\ &= \left(\frac{v_0+2}{v_0+1} \right) \left(\frac{1+v_0}{v_0} \right) - s - \left(\frac{1+v_0}{v_0} \right) \\ &= \left(\frac{v_0+2}{v_0} \right) - \left(\frac{1+v_0}{v_0} \right) - s \\ &= \frac{1}{v_0} - s \qquad \text{3rd mark for correct answer} \end{aligned}$$

Alternate solution:

 $\frac{dv}{dt} = -(v^2 + v^3)$

$$= -v^{2}(1+v) \quad 1\text{st mark for } \frac{dv}{dt} = -(v^{2}+v^{3})$$

$$\int_{v_{0}}^{v} \frac{dv}{v^{2}(1+v)} = -\int_{0}^{t} dt$$

$$-t = \int_{v_{0}}^{v} \left(\frac{1}{v+1} - \frac{1}{v} + \frac{1}{v^{2}}\right) dv$$

$$= \int_{v_{0}}^{v} \left(\frac{1}{v+1} - \frac{1}{v}\right) dv + \int_{v_{0}}^{v} \left(\frac{1}{v^{2}}\right) dv$$

$$= x + \left[-\frac{1}{v}\right]_{v_{0}}^{v} \quad \text{(from part i.)} \quad 2\text{nd mark}$$

$$= x + \frac{1}{v_{0}} - \frac{1}{v}$$

$$t = -x - \frac{1}{v_{0}} + \frac{1}{v}$$

$$t = T, v = \frac{v_{0}}{2}, x = s$$

$$T = -s - \frac{1}{v_{0}} + \frac{2}{v_{0}}$$

$$= \frac{1}{v_{0}} - s \quad 3\text{rd mark for correct answer}$$

$$\frac{1}{v^2(v+1)} \equiv \frac{av+b}{v^2} + \frac{c}{v+1}$$

$$(av+b)(v+1) + cv^2 \equiv 1$$

$$v = -1 \Rightarrow c = 1$$

$$v = 0 \Rightarrow b = 1$$
Comparing coefficients of $v^2 \Rightarrow (a+c)$

$$= 0$$

$$\therefore a = -1$$

$$\therefore \frac{1}{v^2(v+1)} \equiv \frac{1}{v+1} - \frac{1}{v} + \frac{1}{v^2}$$

$$t = -x - \frac{1}{v_0} + \frac{1}{v}$$
 (From iii) 1st mark for reference to t and x in terms of v and v_0

$$\frac{1}{v} = t + x + \frac{1}{v_0}$$

$$= \frac{v_0 t + v_0 x + 1}{v_0}$$

$$v = \frac{v_0}{v_0 t + v_0 x + 1}$$

2nd mark for final answer

b)

i.

Terminal velocity happens when a = 0

$$a = 0 \Rightarrow g - kv^2 = 0$$

$$kv^2 = g$$

$$v^2 = \frac{g}{k}$$

$$v = \sqrt{\frac{g}{k}} \quad (v > 0)$$
 1 mark

ii.
$$a = g - kv^2$$

$$v\frac{dv}{dx} = g - kv^2$$

$$\frac{v}{g - kv^2} dv = dx$$

1 mark for separating v and x for integration

$$-\frac{1}{2k} \int \frac{-2kv}{g - kv^2} dv = \int dx$$

$$x + c = -\frac{1}{2k} \ln|g - kv^2|$$
 1 mark correctly integrating both sides

$$= -\frac{1}{2k} \ln(g - kv^2) \quad (g - kv^2 > 0 \text{ as } a > 0)$$

$$x = 0, v = v_0 \Rightarrow c = -\frac{1}{2k} \ln(g - kv_0^2)$$

$$x - \frac{1}{2k} \ln(g - kv_0^2) = -\frac{1}{2k} \ln(g - kv^2)$$

$$x = \frac{1}{2k} \ln \left(\frac{g - kv_0^2}{g - kv^2} \right)$$

1 mark for integration constant AND reason for removal of absolute value

$$\ln\left(\frac{g - kv_0^2}{g - kv^2}\right) = 2kx$$

$$\frac{g - kv_0^2}{g - kv^2} = e^{2kx}$$

$$g - kv^2 = (g - kv_0^2)e^{-2kx}$$

$$kv^2 = g - (g - kv_0^2)e^{-2kx}$$

$$v^{2} = \frac{g}{k} - \left(\frac{g}{k} - v_{0}^{2}\right)e^{-2kx}$$

$$= V^2 - (V^2 - v_0^2)e^{-2kx}$$

$$= V^2 + (v_0^2 - V^2)e^{-2kx}$$
 1 mark for final answer

i. <u>Variation 1</u>

$$\frac{1}{v(v-1)} \equiv \frac{a}{v} + \frac{b}{v-1}$$

$$1 \equiv a(v-1) + bv$$

$$v = 1 \Rightarrow b = 1$$

$$v = 0 \Rightarrow a = -1$$

$$\frac{1}{v(v-1)} \equiv \frac{1}{v-1} - \frac{1}{v}$$

$$\int_{v_0}^{\frac{v_0}{2}} \frac{1}{v(v-1)} dv = \int_0^s dx$$

$$\int_{v_0}^{\frac{v_0}{2}} \frac{1}{v - 1} - \frac{1}{v} dv = \int_0^s dx$$

$$[\ln|v - 1| - \ln|v|]_{v_0}^{\frac{v_0}{2}} = s$$

$$s = \left[\ln \left| \frac{v - 1}{v} \right| \right]_{v_0}^{\frac{v_0}{2}}$$

$$= \ln \left| \frac{v_0 - 2}{v_0} \right| - \ln \left| \frac{v_0 - 1}{v_0} \right|$$

$$=\ln\left|\frac{v_0-2}{v_0-1}\right|$$

ii.

$$\frac{1}{v^2(v-1)} \equiv \frac{av+b}{v^2} + \frac{c}{v-1}$$

$$(av + b)(v - 1) + cv^2 \equiv 1$$

$$v = 1 \Rightarrow c = 1$$

$$v = 0 \Rightarrow b = -1$$

Comparing coefficients of $v^2 \Rightarrow (a + c) = 0$

$$\therefore a = -1$$

$$\vdots \frac{1}{v^2(v-1)} \equiv \frac{1}{v-1} - \frac{1}{v} - \frac{1}{v^2}$$

$$\frac{dv}{dt} = -v^2 + v^3$$

$$\int_0^T dt = \int_{v_0}^{\frac{v_0}{2}} \left(\frac{1}{v - 1} - \frac{1}{v} - \frac{1}{v^2} \right) dv$$

$$T = \left[\ln \left| \frac{v - 1}{v} \right| + \frac{1}{v} \right]_{v_0}^{\frac{v_0}{2}}$$

$$= \ln \left| \frac{v_0 \left(\frac{v_0}{2} - 1 \right)}{\frac{v_0}{2} (v_0 - 1)} \right| + \frac{1}{\frac{v_0}{2}} - \frac{1}{v_0}$$

$$= \ln \left| \frac{v_0 - 2}{v_0 - 1} \right| + \frac{1}{v_0}$$

$$= s + \frac{1}{v_0}$$

15b)

i.

ii.

$$x = \frac{1}{2k} \ln \left(\frac{g - kv^2}{g - kv_0^2} \right)$$

$$\ln \left(\frac{g - kv^2}{g - kv_0^2} \right) = 2kx$$

$$\frac{g - kv^2}{g - kv_0^2} = e^{2kx}$$

$$g - kv^2 = (g - kv_0^2)e^{2kx}$$

$$kv^2 = g - (g - kv_0^2)e^{2kx}$$

$$v^2 = \frac{g}{k} - \left(\frac{g}{k} - v_0^2 \right) e^{2kx}$$

$$= V^2 - (V^2 - v_0^2)e^{2kx}$$

 $=V^2+(v_0^2-V^2)e^{2kx}$

$$V^{2} - V^{2} = (V^{2} - V_{o}^{2}) e^{-2kx}$$

$$-V^{2} = -V^{2} + (V^{2} - V_{o}^{2}) e^{-2kx}$$

$$V^{2} = V^{2} + (V_{o}^{2} - V^{2}) e^{-2kx}$$

$$V^{2} = V^{2} + (V_{o}^{2} - V^{2}) e^{-2kx}$$

2) i)
$$\overrightarrow{AC} = 4\overrightarrow{AB}$$
 $Z_3 - Z_1 = 4(Z_2 - Z_1)$
 $Z_3 = Z_1 + 4Z_2 - 4Z_1$
 $Z_3 = 4Z_2 - 3Z_1$

ii) $Z_4 - Z_3 \perp Z_1 - Z_1$
 $Z_4 - Z_3 \perp Z_1 + ip(Z_1 - Z_1)$
 $Z_4 = 4Z_1 - 3Z_1 + ip(Z_1 - Z_1)$

(It $Z_1 = 4Z_1 - 3Z_1 + ip(I - Z_1)$
 $Z_1 = 4Z_1 - 3Z_1 + ip(I - Z_1)$

(It $Z_1 = 4Z_1 - 3Z_1 + ip(I - Z_1)$
 $Z_1 = 4Z_1 - 3Z_1 + ip(I - Z_1)$

(It $Z_1 = 4Z_1 - 3Z_1 + ip(I - Z_1)$
 $Z_1 = 4Z_1 - 3Z_1 + ip(I - Z_1)$

(It $Z_1 = 4Z_1 - 3Z_1 + ip(I - Z_1)$
 $Z_1 = 4Z_1 - 3Z_1 + ip(I - Z_1)$

(It $Z_1 = 4Z_1 - 3Z_1 + ip(I - Z_1)$
 $Z_2 = 4Z_1 - 3Z_1 + ip(I - Z_1)$

(It $Z_1 = 4Z_1 - 3Z_1 + ip(I - Z_1)$
 $Z_2 = 4Z_1 - 3Z_1 + ip(I - Z_1)$

(It $Z_1 = 4Z_1 - 3Z_1 + ip(I - Z_1)$
 $Z_2 = 4Z_1 - 3Z_1 + ip(I - Z_1)$

(It $Z_1 = 4Z_1 - 3Z_1 + ip(I - Z_1)$
 $Z_2 = 4Z_1 - 3Z_1 + ip(I - Z_1)$

(It $Z_1 = 4Z_1 - 3Z_1 + ip(I - Z_1)$
 $Z_2 = 4Z_1 - 3Z_1 + ip(I - Z_1)$

(It $Z_1 = 4Z_1 - 3Z_1 + ip(I - Z_1)$
 $Z_2 = 4Z_1 - 3Z_1 + ip(I - Z_1)$

(It $Z_1 = 4Z_1 - 3Z_1 + ip(I - Z_1)$
 $Z_2 = 4Z_1 - 3Z_1 + ip(I - Z_1)$

(It $Z_1 = 4Z_1 - 3Z_1 + ip(I - Z_1)$
 $Z_2 = 4Z_1 - 3Z_1 + ip(I - Z_1)$

(It $Z_1 = 4Z_1 - 3Z_1 + ip(I - Z_1)$
 $Z_2 = 4Z_1 - 3Z_1 + ip(I - Z_1)$

(It $Z_1 = 4Z_1 - 3Z_1 + ip(I - Z_1)$
 $Z_2 = 4Z_1 - 3Z_1 + ip(I - Z_1)$

(It $Z_1 = 4Z_1 - 3Z_1 + ip(I - Z_1)$
 $Z_2 = 4Z_1 - 3Z_1 + ip(I - Z_1)$

(It $Z_1 = 4Z_1 - 3Z_1 + ip(I - Z_1)$

(It $Z_1 = 4Z_1 - 3Z_1 + ip(I - Z_1)$

(It $Z_1 = 4Z_1 - 3Z_1 + ip(I - Z_1)$

(It $Z_1 = 4Z_1 - 3Z_1 + ip(I - Z_1)$

(It $Z_1 = 4Z_1 - 3Z_1 + ip(I - Z_1)$

(It $Z_1 = 4Z_1 - 3Z_1 + ip(I - Z_1)$

(It $Z_1 = 4Z_1 - 3Z_1 + ip(I - Z_1)$

(It $Z_1 = 4Z_1 - 3Z_1 + ip(I - Z_1)$

(It $Z_1 = 4Z_1 - 3Z_1 + ip(I - Z_1)$

(It $Z_1 = 4Z_1 - 3Z_1 + ip(I - Z_1)$

(It $Z_1 = 4Z_1 - 3Z_1 + ip(I - Z_1)$

(It $Z_1 = 4Z_1 - 3Z_1 + ip(I - Z_1)$

(It $Z_1 = 4Z_1 - 3Z_1 + ip(I - Z_1)$

(It $Z_1 = 4Z_1 - 3Z_1 + ip(I - Z_1)$

(It $Z_1 = 4Z_1 - 3Z_1 + ip(I - Z_1)$

(It $Z_1 =$

K- 4- 30 as + 30 50 b (6-06)
- 4 (b2-ablese) - 3alone (b-alse) + 3a220
b(b-a60) - 4b-4ab40 -3ab40 +3a60+3a60
b2- ab as 8
- 462 - 7ab(40 + 3a2 - b2 ab(40)
4/21-7141121689+3/71
12,1, - 12,1/2,16,8

(i) working